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An implicit and fully conservative finite-difference scheme is
proposed for solving the Fokker-Planck equation for Coulomb colli-
sions between isotropically distributed like particles in a spatially
homogeneous plasma. The scheme extends the standard Chang-
Cooper method by providing not only number density conservation,
but also energy conservation. As a result, time steps much larger than
the thermal collision time can be used to stably and accurately simulate
plasmas far from thermal equilibrium. Such a relaxation in time-step
constraint has allowed for the successful implementation of the new
scheme in multidimensiona! transport Fokker-Planck codes, with a
resuiting increase in computational efficiency.  © 1994 Academic Press. Inc.

1. INTRODUCTION

The Fokker—Planck (FP} equation plays an important
role in the investigation of electron transport processes in
laser-produced plasmas [ 1, 2]. Much of the progress in the
numerical solution of the FP equation has been possible
following the pioneering work of Chang and Cooper [3].
They proposed a practical differencing scheme that
preserved particle number and allowed the distribution
function to evolve through a series of quasi-equilibria,
whilst maintaining positivity at all energy groups.

Recently, however, Larsen er al [4] showed that
although the Chang-Cooper scheme works weil for linear
problems, such as the scattering of test particles, it some-
times fails for general nonlinear problems involving the
evolution of distribution functions far from equilibrium.
Larsen er al. [4] generalized the Chang-Cooper method to
allow for a more efficient solution of the nonlinear FP equa-
tion using larger time steps. Unfortunately, their approach
relies on having analytic expressions for the collision coef-
ficients, which are not generally available.

One important property of the FP equation not
addressed by the above authors is energy conservation.
Langdon [5] introduced this property to the Chang-
Cooper scheme, for Coulomb scattering between like
particles, by appropriately differencing the collision

291

coefficients, This modification has been successfuily tested
by Kho [6] and has been found to ensure adequate energy
conservation provided the distribution function does not
change substantially over one time step [2]. For modeling
thermal transport problems in laser-produced plasmas,
Epperlein et al. [ 1] found that energy conservation could
be further improved through a “predictor” step, whereby
the collision coefficients are estimated by linearly
extrapolating the distribution function in time. Berezin et
al. [7] developed further numerical schemes that conserved
not only particle energy and density but also maximized
entropy. Unfortunately, their methods rely on explicit time
integration and are thus of limited practical use.

In this paper we develop a fully implicit finite-difference
method for solving the FP equation for like-particle colli-
sions in plasma that conserve both energy and number den-
sity exactly. The essence of our approach is to first linearize
the FP equation, with the collision coefficients as defined by
Langdon and then to apply the Chang—Cooper approach to
difference the equation in velocity space. The conservative
properties of the scheme are illustrated by considering the
standard test problem [6] of the thermalization of a nearly
monoenergetic electron distribution in a homogeneous
plasma. It is shown that, whereas the conventional scheme
is limited by energy conservation to time steps no larger
than about one hundred thermal collision times, there is no
such limitation with the new scheme.

Although the numerical solution of the finite difference
equation in our propesed scheme requires the inversion of
a full matrix, rather than a tridiagonal matrix [3], the
relaxation in time-step constraints can sometimes far out-
weight the extra computational effort. This is demonstrated
by simulating the evolution a laser-produced plasma using
the SPARK FP code [1, 2], where we typically gain factors
of greater than 10 in computational speed.

Section 2 describes the FP equation and reviews its basic
conservation properties. The numerical scheme is developed
in Section 3. Section 4 presents the test problem of electron
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thermalization in a homogeneous plasma. Section 5
describes simulations of laser-produced plasmas using a FP
code. Section 6 summarizes the main conclusions.

2. THE FOKKER-PLANCK EQUATIONS AND ITS
CONSERVATION PROPERTIES '

The FP equation describing Coulomb collisions of like
particles in a homogeneous fully ionized plasma is given by

af > 9

; J
S| o L= )

where f(v, 1) is the normalized particle distribution func-
tion, such that Ny = {7 dv v°f (v, r =0} is the initial number
density. The collision time between thermal particles is
defined by t = v?/[4nNy(e*/m)* In A], where v, = (Ty/m)"?
is the thermal velocity, T 1s the initial temperature, e is the
charge, m is the mass, and In A is the Coulomb logarithm,
The collision coefficients, describing friction and diffusion,
are given by [8]

C(f)= fo duw’f(u, 1), (2)

2

1 v a0
D)=+ jo du u*f (1, z)+”§j duuf(u, 1),  (3)

v

respectively. The equilibrium solution of Eq.(l} is a
Maxwellian, f,, = (2/n)"? (No/v]) exp( ~v*/20?).
Since the particle numbe density is

N)= | do v, o), (4)

we can readily establish its conservation by taking the
{& dv v” moment of Eq. (1). This gives us

aN v}

e AL

81 N, )

where the appropriate boundary conditions on f are that
[Cf + D(df/év)] vanishes at v =0 and co.

Energy conservation can be verified by taking the
im [ dv v* moment of Eq. (1), ie.,

x| cnreoni]t.
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where E[ = 3NT1] is the energy density. Integrating Eq. (6)
by parts and using the fact that (¢ Df) vanishes at v =0 and
o0, we obtain

ta—Ecc j duv(Cf+ngj
=_L°° [ Cf—a{”D‘ ] (7)
From Eq. (2) and rewriting Eq. (3) as
2 w0y=o?[ " duss (®)
we then have
ra—ot j do [ of - (”;D}f]

= _Lw dv vf (v) L du w’f(u)
+ Lm dv vzf(v)J du uf (u). (9)

By recognizing that the two double integrals on the right-
hand side of this equation are identical, we thus have energy
conservation.

3. THE NUMERICAL SCHEME

The conventional approach for solving Eq. (1) is to
discretize in time such that Ar={("*'—1¢"), and use

8ffet=(f"1 — £/ At to obtain [3]
a+ i+l __ on
Y )
At
v} a e iemeLie _afn+1.i+]
__f " Lien N Dn+l.:—
Nyv? dv (C s + dv )’
(10)
where =0, ..., [ is an iteration index. At the beginning of

each iteration, the nonlinear coefficients are then calculated
with either f**1=%= 7 op fA+1=0=2f"_ -1 (je, a
predictor step). However, as wili be shown later, such
iterative methods can lead to large energy conservation
errors when 4:¢» 1, for plasmas far from thermal equi-
librium.

In this paper we develop a noniterative fully implicit
method for solving Eq. (1) that conserves energy exactly for
arbitrary values of 4¢. The first step involves expanding
F{f) by a truncated Taylor series [9],

a+l _ a_ " n+ 1 __ gn 2
FrtioF +(6;) (- 04, (1)
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Substituting this equation back into Eq. {1} we then obtain

|:At (a;)] n+1_ Fn (12)
where (0F/9f)' f"=2F" and
n+ 1 -'3 nen 4+ naf”+]
() 7 = (e e )
(a)
U3 6 DR ] n+ f"
NOU F" (C "+ D tav)' (13)

(b)

Here, we identify terms (a} and (b) as differential and
integral operators on /', respectively. They represent the
time rate of change of fresulting from the distribution of (a)
test and (b) field particles, at "', By neglecting the more
cumbersome term (b), Eq. (12) reduces to Eq. {10) with
C"tM=C" and D"*''=D" However, even though
terms (a) and (b) individually conserve number density, we
will now show that term {b) is essential to ensure overall
energy conservation,

Taking the 3 {3 dv v* moment of Eq. (12) we find that

T n+1 n _1_ ® 4 i " m+1_ gn
(£ —15)—2mj0 dv v (aﬁ) (S —f)

1 4 g
=5 J do 0*F". (14)
Comparing Eq.(14) with Eq.{6) and noting that
(OFfaf )" /" =2F" and [ dv v*F =0, we are left with
i(En+1 En)__mJ. dUU fn+l (15)
At af

which can then be expanded (using the techniques of
Section 2) to

i(E",“—E")oc L duuf"“(u)j dut w3 (1)

+ Lm dv vf"(v) _Lv du 3 Hu)
(a)
— L dv uf” (U)J du 3"+ ()
] oo o) | duiru =0,

(b) (16}
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Once again, terms (a) and (b) correspond to the differential
and integral operators, as in Eq. (13). These terms cancel
each other out and lead to exact energy conservation for
arbitrary values of /" and " *'. We do recall, however, that
number density conservation does not require the use of
term (b) [3].

Our remaining task is to finite difference Eq. (12) in
velocity space. We introduce f;= f(v;), where the index
j=1,..,J denotes a cell center. The cell boundaries are
defined by v, ,,={v;+v,,,)/2, where v,,=0 and
Usi12= Umaxs and the cell sizes (not necessarily uniform)
are given by Adv,=(v;,,p—0;_p) and dv;, =
(v;4+1— ;). Equation (12) now becomes {using the conven-
tion of summing over repeated indices)

T d "+ ] n
[A_,‘Sjk (af jj(f L") =F (17)

where

(18)

OF\" _L(An +B87)
af jk_Nouf dp, T

The matrix elements, corresponding terms {a} and (b) of
Eq. (13) are, respectively, given by

D', D
no__ /2 —1/2
Ajk_—( e ol S )+C 1207412

Avj+!/2 Auj_l,'z
Cr_ (1 =98;_12) for j=k
Dr;+1[2 n
=T + 7 p(1=0,040)
i+ 172
for j+1=k
Di_\p
= —Ccr 5.
Avj—l,'z i—12vi=172
for j—1=k
=0 for j—1>kandj+ 1<k,
and
Bi=dvof fi+ 0=V S, for j=k
—ﬂk£71+:/2d '-’J +(‘J}J+l/2 I)j—[jZ)Sj] for j<k

= Av vy Lf =171
+ (}';4- 1/2_)’;— 1/2) Ok w172V + 172 Qi 2]

+.uk(7’;+1,f2‘_ ?’}1_ 1/2) S for j>k,



294

with

i—=1 fn mfrr
_ 2 n _ j+1 i
Sj_ Z 4v; v, Yiv12 = A
Viv12 484 142

i=1
Hp=Vip1p AU}+1/25,'+ 2tV de (1 =82 p)
Following the Chang—Cooper method, we use

f:i+1/2 =(1- 5j+ 1/2]f,-+1 +5j+1/2fj,

where

1 1

Wiiin eXplw;,ip) — 1’

'5j+1,'2=

and w;, ,=4v,,,,Ciy12/D; 4 15. This type of weighting
has been designed to preserve positivity and provide the
correct equilibrium solution for f[3].

In order to compiy with the energy conservation relations
discussed in this paper, the collisional terms are calculated
from Egs. (2) and (8), as [5, 6]

J
Cj+ 12 = Z 4, U%fh

i=1
J—1

(UD);+1,'2= (UD)j—:/z+AUj sz Z A0 10 012 fiv 1725

{=j

and

J—1

2
(2D)35=Av v] E AU.'H/z Uf+1/2f.'+1,fz-
=1

The appropriate boundary conditions give rise to
D
fl,t’lCl,"Z + A L2 (f2 _fl)
Uiz

D
=fJ+U2CJ+H1+_J+i(f1+1"_f.!)=01

4 J+172
=03, A3y 53/2,
Hi=Vy_yp Av, 1/2 (1- 8, 1/2);

Yir12=0, Jr41=0, fJ+1,f2=0-

4. TEST PROBLEM

We consider the thermalization of an approximately
monoenergetic distribution of particles through small-angie
Coulomb scattering. Figure 1 shows the typical evolution
of such a distribution, obtained by solving Eq. (17). As
expected from previous calcuiations (e.g., Ref. [5]), the
particles attain close to a Maxwellian distribution fy, of
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FIG. 1. Plot of the distribution function f (nermalized to fi{v=0)),
as a function of velocity v (normalized to o)), at 1=0, 7, 27, 37, 41, 51,
and oo,

density Ny, and temperature Ty, in about five collision
times,

For the case shown in Fig. 1, where the time step was
taken to be 0.17, both iterative and implicit approaches for
solving the FP equation are found to be sufficiently
accurate. So the question is—what happens to the solution
when At 3 1?7

Using the new implicit-conservative scheme we find that
the distribution function evolves to the correct Maxwellian
steady-state solution in about three time steps, whilst main-
taining constant energy. With the iterative approach,
however, the lack of exact energy conservation leads to
Maxwellian distribution functions of different tem-
peratures T. To characterize these results, we calculate the
fractional temperature difference, (T — To)/Ty| = 16T/ To1,
as a function of 44/r. These are plotted in Fig, 2, assuming
either f7+11=0= f7 or frtli=0._gpm_ =1 (4 predictor
step}. As observed, in the absence of further iterations and
for Ar< 207, considerable improvement can be achieved

100 7,

101

T T T T T =T T TTTTT

s vl

[8T Tyl

10-2

Loyl

L1l aaahiinl oLy

103
10-1 100 v 101 102
Aty

FIG. 2. Plot of fractional energy error [6T/T,|, as a function of A/,
using either /"*+=%= " (dashed curves), and with either no iteration
(I=0) or 10 iterations ({ = 10).
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with the predictor step. For At> 201, however, neither
approach is satisfactory, and the predictor method ieads to
larger errors. In fact, for 4¢3 1001, the predictor method
has been found to produce negative distribution functions
and numerical instabilities.

As expected, iterations are found to improve the accuracy
of the solutions (see Fig. 2). These improvements, however,
become less pronounced as A#/t increases, and the energy
errors still remain above 20% for 4:> 100z, even after
10 iterations. )

The results presented in Figs. | and 2 are not too sensitive
to the initial spread in energy distribution about the most
likely energy, although the closer the distribution is to
equilibrium, the smaller the energy errors become.

5. SIMULATIONS OF LASER-PRODUCED PLASMAS

The ablation of a target by a high-power laser, as
envisaged in a laser-fusion scenario, has been routinely
simulated using the SPARKFP code[!,2]. The code
assumes fluid ions and solves for the electron distribution
function, including effects such as transport in configuration
space, laser heating, and electron thermalization in velocity
space. Since the last process is modeled by the same equa-
tion considered in this paper, its method of solution can
have an important impact on the computational efficiency
of the code.

As discussed in the previous section, if the time step used
in the code is much greater than ¢ (where t = 7, is now the
thermal collision time between electrons), and the electron
distribution function is far from equilibrium, one might
expect significant energy errors when using the standard
iterative scheme for the electron—electron collision operator.
To demonstrate this effect we simulate the evolution of a
laser-produced plasma using SPARK.

10T —T E1D22
103 . 1
F I" Nc%;1021 o
& [ i 3 T
) - ) ] E
= 102k ~a § L
= 10 3 b ] =
[ ! 41020
10!} i 3
3 ! 1
d jA B ]
r t
100 L n l L i l L L L . 1019
0 300 600

z (um)

FIG. 3. Plots of electron number density N (in cm ™) and tem-
perature 7 (in eV}, as functions of z (in gm). Solid curves are obtained
using the implicit-conservative scheme on SPARK, with (a) At=1 ps and
{b) 4t =0.1 ps, and dashed curves are based on fluid model results. The
critical density is density is identified by N_..
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We first consider an idealized planar plasma of the type
initially studied by Albritton [10]. The ions are assumed
cold, immobile, and fully ionized, with an effective ioniza-
tion number of Z=10. Figure 3 shows the corresponding
electron number density profile as a function of space z.
A 1.06-4m laser is incident from the right, with its energy
being deposited via inverse-bremsstrahlung (up to the criti-
cal density, No= N, = 10*! cm ~?*) at a constant intensity of
10" W/em? over a period of 100 ps. Unlike Albritton,
however, we assume a much lower initial electron tem-
perature of 1 ¢V,

SPARK is run with 40 zones in z and 40 feathered zones
in v, such that Av, , | /Av, = L.11 and v, = 200 v,. Using the
implicit-conservative scheme we find that a constant time
step of 0.1 ps provides a converged solution for the thermal
heat front (shown in Fig. 3). The overall CPU time for this
simulation is 74 s on a Cray Y-MP. To highlight the non-
local nature of the electron transport, Fig. 3 also plots the
temperature profile (dashed curve) based on a fluid descrip-
tion of the energy equation, using the Spitzer—Hédrm heat
flow formula [11]. This shows certain well-known features
of nonlocal transport [10, 1], such as inhibition of the main
heat front and preheat due to long-mean-free-path electrons
coming {rom the corona.

The above simulations have been repeated using the
conventional iterative method for the electron—electron
collision operator. Figure 4 plots the resulting temperature
profiles for Ar=1, 107!, 1072, and 1077 ps, assuming that
f7+hi=%= £ (followed by one iteration). The correspond-
ing CPU times are 1.3, 13, 130, and 1300 s. A comparison
between Figs. 3 and 4 shows the slow convergence of the
iterative scheme. This is especially true at high densities,
where the preheat is occurring, Also, even though curve d
{(in Fig. 4) is not yet fully converged, it has already taken
18 times more computational effort than the corresponding
curve b (in Fig. 3). The predictor scheme, which assumes

104 E T T T T T T E
103 3
&= i N
I
+ 102 3 E
101 E _§
109 . !
0 300 600
z {um)

FIG. 4. Plots of electron temperature 7 {in eV) as a function of z (in
pm). Results are based on the iterative scheme with one iteration, and (a)
di=1ps, (b) 41=10""ps, (c) 41=10""ps, and (d} 41 =10~ ps. Same
conditions as in Fig. 3.
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FIG. 5. Plots of f (in arbitrary units) as a functions of electron kinetic
energy +mp’ (in keV). Curves correspond to positions A and B in Fig. 3.

that f7* 17 =0=2f"_. =1 (followed by one iteration),
turns out to be impractical in this case, since it leads to
numerical instability for 4t > 1072 ps.

.To understand the poor performance of the iterative
scheme we must first realize that the electron distribution
function is far from a Maxwellian. This is shown in Fig. 5,
which plots f as a function of electron kinetic energy (1) mv?
(in keV), corresponding to positions (A) and (B) in Fig. 3.
Here we note the typical [ 10] double-Maxwellian nature of
the electron distribution in the overdense region (A), where
the “hot” tail shares the same temperatures as the tail of the
distribution at the critical density (B}. Another important
clue to the poor performance of the iterative scheme lies in
the values of t,,, which are plotted in Fig. 6 {for the same
conditions as in Fig. 3). Together with the discussion in Sec-
tion 4, this figure shows why the convergence of the iterative
scheme is so slow at high densities and low temperatures.
Indeed, even for 4¢=10"2ps, the high-density unheated
plasma has a characteristic 1., ~ 0.014z.

To test the implicit-conservative scheme under less
idealized plasma conditions, we now consider the recent

101

T T T T T T T T T

|

100

10-1

l

10-2

Tee (PS)

10-3

104

TV T T T TTTImTT
IR

ATESTIT R RTTI|

o5 1
0 300

z (1m)

600

FIG. 6.
as in Fig. 3.

Plot of z,, (in ps) as a function of z (in pm). Same conditions
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Rayleigh-Taylor experiments performed at Lawrence
Livermore National Laboratories using the NOVA
laser [127]. We attempt to model their plasma conditions by
simulating the evolution of a CH foil, illuminated by
530-nm laser light, with 1-ns linear rise time followed by a
2-ns flat section, at an intensity of 5 x 10'* W/cm?.

Our initial conditions correspond to a fully ionized
18-um CH plasma at a temperature of 0.5 eV and an elec-
tron number density of 3.38 x 10?2 cm —*. The code is run in
one-dimensional planar geometry, on a Lagrangian mesh,
assuming cold fluid ions. The configuration space mesh uses
50 zones, and the velocity mesh uses 35 feathered zones
(where the mesh size increases at a constant ratio,
Av;y fdv;=1.11) and 0, = 2800,

Figure 7 plots the electron temperature and number den-
sity as functions of space z at 3 ns. The implicit-conservative
scheme has been used with a constant time step of 1 ps. The
overall computation time of the simulation is 230 CPU
seconds on a Cray Y-MP.

In this case, in order to obtain a similarly accurate solu-
tion, the conventional iterative scheme (with one iteration)
would require a prohibitevely small time step of < 107" ps.
Using the predictor step (followed by one iteration),
however, it has been possible to successfully reproduce the
results in Fig. 7 with 41=0.01 ps. (Unfortunately, this type
of iterative scheme leads to numerical instabilities for
At > 0.01 ps.) This uses a total of 7200 CPU seconds of com-
putational time. So despite the fact that the implicit-conser-
vative scheme requires three times more computational
effort per 4r, the hundred-fold increase in 4¢ has produced
a thirty-fold enhancement in computational speed.

It must be realized that many factors can affect the
relative efficiency of using the implicit-conservative scheme.
An obvious one is the value of 1_,, as dermonstrated by the
previous numerical simulations. Another is the number of
velocity groups J. Since the solution of Eq. (17) requires

104 ¢ 31024
108 1
F 41023 _
- 3 N
- I 3 £
T 02E 1 2
- E b
L - <1022
101 ¢ 3
- ____-'-
100 P S S SV D S R 1021
-200 0 200

z (um)

FIG. 7. Plots of electron number density N (in cm™?) and tem-
perature T (ineV), as function of z (relative to initial target position in

um), at 3 ns., Results are obtained using the implicit-conservative scheme

on SPARK, with 4¢=1 ps.
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inversion of a full matrix rather than a tridiagonal matrix
{as required by Eq. (10)), the computational effort scales
approximately as J? instead of J. This explains the larger
computational effort (per time step)} required by the
implicit-conservative scheme. Although this can eventually
limit the size of J, it is found that in practice one can
alleviate this problem by judiciously feathering the velocity
mesh (as done in the above simulations).

6. CONCLUSIONS

In this paper an implicit finite-difference scheme has been
developed for solving the FP equation for like particle colli-
sions in plasmas. Unlike the currently available schemes, it
enforces not only number density conservation, but also
exact energy conservation. These propertics have been
demonstrated both analytically ‘and numerically by
considering the thermalization of an approximately
monoenergetic distribution of particles. It is shown that
even when the numerical integration time step is much
larger than the thermal collision time, the correct steady-
state solution is obtained. By comparison, numerical solu-
tions based on conventional iterative approaches can yield
unacceptably large energy errors.

The usefulness of the new implicit-conservative scheme
has been demonstrated by implementing it in the laser-
plasma transport code SPARK. Apart from improving the
reliability of the code, the relaxation in time-step constrains
has typically allowed for over an order of magnitude reduc-
tion in computational time.
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